
Linear Models with R (2007) by Ben Bolker. A comprehensive and practical guide to using R for linear models. The book covers regression analysis, analysis of variance, and correlation analysis, as well as more advanced topics such as mixed-effects models and generalized linear models. It includes numerous examples and exercises, and provides a practical introduction to R programming.

Applied Linear Statistical Models (2007) by Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. An introduction to linear statistical models, emphasizing data analysis rather than theory. The book provides a broad, in-depth overview of the most commonly used statistical models by discussing their application to real data sets. It includes a variety of examples and exercises, and provides a comprehensive introduction to R programming.


Linear Models (2011) by J. S. Neter, M. H. Kutner, C. J. Nachtsheim, and W. W. Li. A comprehensive introduction to linear statistical models, emphasizing data analysis rather than theory. The book provides a broad, in-depth overview of the most commonly used statistical models by discussing their application to real data sets. It includes a variety of examples and exercises, and provides a comprehensive introduction to R programming.

Generalized Linear Models: A Unified Approach (2009) by Jeff Gill. Provides an introduction to and overview of GLMs, with each chapter on a different topic. The book covers logistic regression, log-linear models, and Poisson regression, and discusses the fitting of generalized linear models in R. It is suitable for students and researchers with a basic knowledge of linear regression who want to learn about generalized linear models.

Introduction to Statistical Modelling (2013) by Jim Lindsey. A comprehensive introduction to linear statistical models, emphasizing data analysis rather than theory. The book provides a broad, in-depth overview of the most commonly used statistical models by discussing their application to real data sets. It includes a variety of examples and exercises, and provides a comprehensive introduction to R programming.

A First Course in Linear Model Theory (2013) by Nalini Ravishanker and Dipak K. Dey. Provides an introduction to linear statistical models, emphasizing data analysis rather than theory. The book provides a broad, in-depth overview of the most commonly used statistical models by discussing their application to real data sets. It includes a variety of examples and exercises, and provides a comprehensive introduction to R programming.

Generalized Linear Models with Random Effects: Unified Structure and Exponential Family Inference (2010) by Youngjo Lee and Young Ho Kim. Provides a comprehensive introduction to linear statistical models, emphasizing data analysis rather than theory. The book provides a broad, in-depth overview of the most commonly used statistical models by discussing their application to real data sets. It includes a variety of examples and exercises, and provides a comprehensive introduction to R programming.

Analysis of Covariance (2010) by Robert W. Stine and John W. satellite. Provides an introduction to linear statistical models, emphasizing data analysis rather than theory. The book provides a broad, in-depth overview of the most commonly used statistical models by discussing their application to real data sets. It includes a variety of examples and exercises, and provides a comprehensive introduction to R programming.

Linear Models (2011) by J. S. Neter, M. H. Kutner, C. J. Nachtsheim, and W. W. Li. A comprehensive introduction to linear statistical models, emphasizing data analysis rather than theory. The book provides a broad, in-depth overview of the most commonly used statistical models by discussing their application to real data sets. It includes a variety of examples and exercises, and provides a comprehensive introduction to R programming.

Generalize Linear Models: The Exponential Distribution and Normal Mean (2009) by Jeff Gill. Provides an introduction to linear statistical models, emphasizing data analysis rather than theory. The book provides a broad, in-depth overview of the most commonly used statistical models by discussing their application to real data sets. It includes a variety of examples and exercises, and provides a comprehensive introduction to R programming.

The History of the General Linear Model (2008) by Robert W. Stine. Provides an introduction to linear statistical models, emphasizing data analysis rather than theory. The book provides a broad, in-depth overview of the most commonly used statistical models by discussing their application to real data sets. It includes a variety of examples and exercises, and provides a comprehensive introduction to R programming.

Generalized Linear Models: Theory and Practice (2007) by W. N. Venables and B. D. Ripley. Provides a comprehensive introduction to linear statistical models, emphasizing data analysis rather than theory. The book provides a broad, in-depth overview of the most commonly used statistical models by discussing their application to real data sets. It includes a variety of examples and exercises, and provides a comprehensive introduction to R programming.

Generalized Linear Models: A Unified Approach (2009) by Jeff Gill. Provides an introduction to and overview of GLMs, with each chapter on a different topic. The book covers logistic regression, log-linear models, and Poisson regression, and discusses the fitting of generalized linear models in R. It is suitable for students and researchers with a basic knowledge of linear regression who want to learn about generalized linear models.

Generalized Linear Models (2004) by Donald A. Schlink. Provides an introduction to linear statistical models, emphasizing data analysis rather than theory. The book provides a broad, in-depth overview of the most commonly used statistical models by discussing their application to real data sets. It includes a variety of examples and exercises, and provides a comprehensive introduction to R programming.

Generalized Linear Models: The Exponential Distribution and Normal Mean (2009) by Jeff Gill. Provides an introduction to linear statistical models, emphasizing data analysis rather than theory. The book provides a broad, in-depth overview of the most commonly used statistical models by discussing their application to real data sets. It includes a variety of examples and exercises, and provides a comprehensive introduction to R programming.

Generalized Linear Models: A Unified Approach (2009) by Jeff Gill. Provides an introduction to and overview of GLMs, with each chapter on a different topic. The book covers logistic regression, log-linear models, and Poisson regression, and discusses the fitting of generalized linear models in R. It is suitable for students and researchers with a basic knowledge of linear regression who want to learn about generalized linear models.

Generalized Linear Models: The Exponential Distribution and Normal Mean (2009) by Jeff Gill. Provides an introduction to linear statistical models, emphasizing data analysis rather than theory. The book provides a broad, in-depth overview of the most commonly used statistical models by discussing their application to real data sets. It includes a variety of examples and exercises, and provides a comprehensive introduction to R programming.
Random Effects takes a first step in developing a full theory of richly parameterized models, which would allow statisticians to better understand their analysis results. The author examines what is known and unknown about mixed linear models and identifies research opportunities. The first two parts of the book serve as an exciting springboard for unifying models with random effects. The text explains how richly parameterized models can be represented as mixed linear models and mixed linear regression and dissection methods. In the last two parts, the author describes unified models that can arise when analyzing data using these models. The book presents ways to detect problems and, when possible, shows how to adapt or avoid them. The tools and ideas from linear model theory and those from latent (first) theory by examining the implementation of the data about the mixed linear model's covariance matrices. Each chapter ends with two sets of exercises. Conventional problems result in the usual emphasis on testing hypotheses, whereas other problems are meant to be answered by simulation. Solutions to most of the exercises are available on the author's website.

Multilevel Models: Methods in Social Research (Statistics for Social and Behavioral Sciences) - Myung-Ju So 2007-03-29 The book covers a broad range of topics about multilevel modeling. The goal is to help readers to understand the basic theory, statistical foundations, and application methods of multilevel modeling. It is not just data oriented, but is algorithmic, theoretical, and statistical. The book is organized into five major parts: Multilevel Estimation and Hypothesis Testing, Theories of Multilevel Analysis, Applications of Various Multilevel Models and Using the Widely Used Statistical Software HLM, Examples are drawn from analysis of real-world data. The book is the only comprehensive text that provides a well-rounded and in-depth understanding of the complexities of multilevel models. It is designed for both graduate and advanced undergraduate students and researchers. The book is appropriate for graduate courses in social statistics, biostatistics, and educational research. It is also suitable for advanced undergraduates and graduate students in psychology, education, and other social and behavioral sciences.

The Multivariate Social Scientist: A First Step toward a Unified Theory of Statistical Models - James S. Hodges 2016-04-19 A Primer on Linear Models introduces the reader to the basic theory and application of linear models. The text explains how linear models can be represented as mixed linear models and analyzed using the widely used statistical software HLM. Examples are drawn from analysis of real-world data. The book is organized into five major parts: Multilevel Estimation and Hypothesis Testing, Theories of Multilevel Analysis, Applications of Various Multilevel Models and Using the Widely Used Statistical Software HLM, Examples are drawn from analysis of real-world data. The book is the only comprehensive text that provides a well-rounded and in-depth understanding of the complexities of multilevel models. It is designed for both graduate and advanced undergraduate students and researchers. The book is appropriate for graduate courses in social statistics, biostatistics, and educational research. It is also suitable for advanced undergraduates and graduate students in psychology, education, and other social and behavioral sciences.

A Primer on Linear Models: John F. Monahan 2008-03-31 A Primer on Linear Models presents a unified, thorough, and rigorous development of the theory behind the statistical methodology of regression and analysis of variance (ANOVA). It modernly incorporates linear concepts using modern/minimalist notations and emphasizes the linear, finite sample theory supporting common statistical methods.

The Linear Model with R (Chapman & Hall/CRC Texts in Statistical Science) - Julian J. Faraway 2014-04-15 Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. This book's critically acclaimed Linear Models with R examines regression and analysis of variance, demonstrating the different methods available, and shows how to calculate each using R commands. Using an updated version of the code, the author provides readers with the tools necessary to analyze data in R and shows how to interpret the results. Each chapter is concluded with a set of exercises, and the book includes an extensive example that shows the analysis process from data collection to interpretation of results. The book is an excellent resource for statisticians and data analysts who want to understand the theory behind the code and how to use R to analyze multilevel models.